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ABSTRACT

One of the indicators for evaluating the capability of a process is the
process capability index Cp. The confidence interval of Cp is important
for statistical inference on the process. Usually, the calculation of the
confidence interval for a process capability index requires an assumption
about the underlying distribution. Therefore, three confidence intervals
for based on the confidence intervals for the variance under non-normality
were proposed in this paper. The confidence intervals considered were
the adjusted degrees of freedom (ADJ) confidence interval, large-sample
(LS) confidence interval, and augmented-large-sample (ALS) confidence
interval. The estimated coverage probability and expected length of 95%
confidence intervals for Cp were studied by means of a Monte Carlo sim-
ulation under different settings. Simulation results showed that the ALS
confidence interval performed well in terms of coverage probability for
all conditions. The LS and ADJ confidence intervals had much lower
coverage probability than the nominal level for skewed distributions.

Keywords: confidence interval, process capability index, simulation study,
non-normality.
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1. Introduction

Statistical process control (SPC) has been widely applied in order to moni-
tor and control processes in many industries. In recent years, process capability
indices (PCIs) have generated much interest and there is a growing body of
statistical process control literature. PCIs are one of the quality measurement
tools that provide a numerical measure of whether a production process is ca-
pable of producing items within specification limits (Maiti and Saha (2012)).
PCI is convenient because it reduces complex information about a process to a
single number. If the value of the PCI exceeds one, it implies that the process
is satisfactory or capable.

Although there are several PCIs, the most commonly applied index is Cp
(Kane, 1986, Zhang, 2010). In this paper, we focus only on the process capa-
bility index Cp, defined by Kane (1986) as:

Cp =
USL− LSL

6σ
, (1)

where USL and LSL are the upper and lower specification limits, respectively,
and σ is the process standard deviation, assuming the process output is approx-
imately normally distributed. The numerator of Cp gives the size of the range
over which the process measurements can vary. The denominator gives the size
of the range over which the process actually varies (Kotz and Lovelace (1998)).
Due to the fact that the process standard deviation is unknown, it must be
estimated from the sample data {X1, X2, . . . , Xn}. The sample standard de-

viation S; S =
√

(n− 1)−1
∑n
i=1(Xi − X̄)2 is used to estimate the unknown

parameter σ in Equation (1). The estimator of the process capability index Cp
is therefore

Ĉp =
USL− LSL

6S
, (2)

Although the point estimator of the capability index Cp shown in Equa-
tion (2) can be a useful measure, the confidence interval is more useful. A con-
fidence interval provides much more information about the population charac-
teristic of interest than does a point estimate (e.g. Smithson (2001); Thompson
(2002); Steiger (2004)). The confidence interval for the capability index Cp is
constructed by using a pivotal quantity Q = (n− 1)S2/σ2 ∼ χ2

n−1. Therefore,
the (1− α)100% confidence interval for the capability index Cp isĈp

√
χ2
α/2,n−1

n− 1
, Ĉp

√
χ2
1−α/2,n−1

n− 1

 (3)
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where χ2
α/2,n−1 and χ2

1−α/2,n−1 are the (α/2)100th and (1 − α/2)100th per-
centiles of the central chi-squared distribution with (n− 1) degrees of freedom.

The confidence interval for the process capability index Cp shown in Equa-
tion (3) is to be used for data that are normal. When the data are normally
distributed, the coverage probability of this confidence interval is close to a
nominal value of 1−α. However, the underlying process distributions are non-
normal in many industrial processes (e.g., Chen and Pearn (1997); Bittanti
and Moiraghi (1998); Wu and Messimer (1999); Chang and D.S. (2002); Ding
(2004)). In these situations, the coverage probability of the confidence interval
can be considerably below 1 − α. Hummel and Hettmansperger (2004) pre-
sented a confidence interval for population variance by adjusting the degrees of
freedom of chi-square distribution. In order to develop approximate confidence
intervals for variance under non-normality, Burch (2014) considered a num-
ber of kurtosis estimators combined with large-sample. Thus, the researcher
deemed that it would be interesting to construct three confidence intervals
for the process capability index Cp based on the confidence intervals for the
variance proposed by Hummel and Hettmansperger (2004) and Burch (2014).

The structure of the paper is as follows. In Section 2, we review the confi-
dence intervals for the variance under non-normality. Confidence intervals for
the process capability index are presented in Section 3. In Section 4, simula-
tions are undertaken to see how the confidence intervals perform under different
conditions. Conclusions are presented in the final section.

2. Confidence Intervals for the Variance Under
Non-normality

In this section, we review the confidence intervals for the variance under
non-normality proposed by Hummel and Hettmansperger (2004) and Burch
(2014).

2.1 Adjusted degrees of freedom confidence interval

Suppose Xi ∼ N(µ, σ2), i = 1, 2, ..., n, this method depends on the fact that
the sample variance is a sum of squares, and, for samples sufficiently large, can
be approximated as a chi-square with an appropriate estimate for the degrees
of freedom. Hummel and Hettmansperger (2004) found an estimate for the
degrees of freedom using the method of matching moments (e.g., Shoemaker
(1999); Mood and Boes (1974); Searls and Intarapanich (1990)). They matched
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the first two moments of the distribution of S2 with that of a random variable
X distributed as cχ2

r. The solution for r and c is solved using the following

system of equations: (1) σ2 = cr, and (2)
σ4

n

(
κ− n− 3

n− 1

)
= 2rc2, where κ is

the kurtosis of the distribution defined by κ =
E[(X − µ)4]

(E[(X − µ)2])2
. Hummel and

Hettmansperger (2004) proposed the confidence interval for σ2 by adjusting
the degrees of freedom of chi-squared distribution is given by(

r̂S2

χ2
1−α/2,r̂

,
r̂S2

χ2
α/2,r̂

)
, (4)

where χ2
α/2,r̂ and χ2

1−α/2,r̂ are the α/2 and 1 − α/2 quantiles of the central
chi-squared distribution with r̂ degrees of freedom, respectively with

r̂ =
2n

γ̂ + 2n/(n− 1)

and

γ̂ =
n(n+ 1)

(n− 1)(n− 2)(n− 3)

n∑
i=1

(Xi − X̄)4

S4
− 3(n− 1)2

(n− 2)(n− 3)
.

2.2 Large-sample confidence interval for the variance

Suppose Xi ∼ N(µ, σ2), i = 1, 2, ..., n, an equal-tailed (1 − α)100% confi-
dence interval for σ2, using a pivotal quantity Q = (n − 1)S2/σ2, is Cojbasic
and Loncar (2011)

(
(n− 1)S2

χ2
1−α/2,n−1

,
(n− 1)S2

χ2
α/2,n−1

)
,

where S2 = (n−1)−1
∑n
i=1(Xi−X̄)2, and χ2

α/2,n−1 and χ
2
1−α/2,n−1 are the α/2

and 1−α/2 quantiles of the central chi-squared distribution with n−1 degrees
of freedom, respectively. If the normality assumption is not true, then one
can depend on large-sample theory, which indicates that S2 is asymptotically
normally distributed. Namely,
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S2 asymp∼ N

(
σ2,

σ4

n

(
κe +

2n

n− 1

))
,

where κe is excess kurtosis of the distribution defined by

κe =
E[(X − µ)4]

(E[(X − µ)2])2
− 3.

While the asymptotic variance of S2 is unbiasedly estimated, the confidence
interval defined as S2 ± z1−α/2

√
v̂ar(S2), where z1−α/2 is the 1− α/2 quantile

of the standard distribution, is infrequently used since the distribution of S2 is
positively skewed when sample sizes are small. In practice, a natural logarithm
transformation of S2 is aplied in order to achieve approximate normality for
the distribution of log(S2) in finite sample-size applications. The mean and
variance of log(S2) are estimated using the first two terms of a Taylor’s series
expansion. It follows that

log(S2)
approx∼ N

(
log(σ2),

1

n

(
κe +

2n

n− 1

))
,

and a large-sample confidence interval for σ2 given by(
S2 exp

(
−z1−α/2

√
A
)
, S2 exp

(
z1−α/2

√
A
))

, (5)

where A =
G2 + 2n/(n− 1)

n
, in this case κe has been replaced with the com-

monly used estimator G2 defined by

G2 =
n− 1

(n− 2)(n− 3)
[(n− 1)g2 + 6],

with g2 =
m4

m2
2

− 3, m4 = n−1
∑n
i=1(Xi − X̄)4 and m2 = n−1

∑n
i=1(Xi − X̄)2.

2.3 Augmented-large-sample confidence interval for the
variance

Burch (2014) considered a modification to the approximate distribution of
log(S2) by using a three-term Taylor’s series expansion. Employing the large-
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sample properties of S2, the mean and variance of log(S2) are given by

E(log(S2)) ≈ log(σ2)− 1

2n

(
κe +

2n

n− 1

)
,

var(log(S2)) ≈ 1

n

(
κe +

2n

n− 1

)(
1 +

1

2n

(
κe +

2n

n− 1

))
.

Both the mean and the variance of log(S2) are dependent on the kurtosis of
the underlying distribution. The augmented-large-sample confidence interval
for σ2 is (

S2 exp
(
−z1−α/2

√
B + C

)
, S2 exp

(
z1−α/2

√
B + C

))
, (6)

where B = v̂ar(log(S2)), C =
κ̂e,5 + 2n/(n− 1)

2n
, in this case κe has been

replaced with the modified estimator κ̂e,5 defined by

κ̂e,5 =

(
n+ 1

n− 1

)
G2

(
1 +

5G2

n

)
.

3. Proposed Confidence Intervals for the
Process Capability Index

From Equation (4), we construct the confidence interval for the Cp based on
the confidence interval for σ2 by adjusting the degrees of freedom of chi-square
distribution, which is

P

(
r̂S2

χ2
1−α/2,r̂

< σ2 <
r̂S2

χ2
α/2,r̂

)
= 1− α

P

√χ2
α/2,r̂

r̂S2
<

1

σ
<

√
χ2
1−α/2,r̂

r̂S2

 = 1− α
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P

USL− LSL
6S

√
χ2
α/2,r̂

r̂
<
USL− LSL

6σ
<
USL− LSL

6S

√
χ2
1−α/2,r̂

r̂


= 1− α.

Therefore, the (1 − α)100% confidence interval for the Cp based on the
confidence interval for σ2 by adjusting the degrees of freedom of chi-square
distribution is given by

CIADJ =

USL− LSL
6S

√
χ2
α/2,r̂

r̂
,
USL− LSL

6S

√
χ2
1−α/2,r̂

r̂

 . (7)

Similarly, from Equation (5) the confidence interval for the Cp based on the
large-sample confidence interval for σ2 can be derived as follows

P
(
S2 exp

(
−z1−α/2

√
A
)
< σ2 < S2 exp

(
z1−α/2

√
A
))

= 1− α

P

 1

S

√
exp

(
z1−α/2

√
A
) < 1

σ
<

1

S

√
exp

(
−z1−α/2

√
A
)
 = 1− α

P

 USL− LSL

6S

√
exp

(
z1−α/2

√
A
) < USL− LSL

6σ
<

USL− LSL

6S

√
exp

(
−z1−α/2

√
A
)


= 1− α.

Thus, (1−α)100% confidence interval for the Cp based on the large-sample
confidence interval for σ2 is

CILS =

 USL− LSL

6S

√
exp

(
z1−α/2

√
A
) , USL− LSL

6S

√
exp

(
−z1−α/2

√
A
)
 . (8)

Using Equation (6), we find the confidence interval for the Cp based on the
augmented-large-sample confidence interval for σ2, which is
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P
(
S2 exp

(
−z1−α/2

√
B + C

)
< σ2 < S2 exp

(
z1−α/2

√
B + C

))
= 1− α

P

 1

S

√
exp

(
z1−α/2

√
B + C

) < 1

σ
<

1

S

√
exp

(
−z1−α/2

√
B + C

)
 = 1− α

P

 USL− LSL

6S

√
exp

(
z1−α/2

√
B + C

) < USL− LSL
6σ

<
USL− LSL

6S

√
exp

(
−z1−α/2

√
B + C

)


= 1− α.

Therefore, the (1 − α)100% confidence interval for the Cp based on the
augmented-large-sample confidence interval for σ2 is given by

CIALS =

 USL− LSL

6S

√
exp

(
z1−α/2

√
B + C

) , USL− LSL

6S

√
exp

(
−z1−α/2

√
B + C

)
 . (9)

4. Simulation Results

This section provides the simulation studies for the estimated coverage
probabilities and expected lengths of the three confidence intervals for the
capability index Cp proposed in the previous section. The estimated cover-
age probability and the expected length (based on M replicates) are given
by 1̂− α = #(L ≤ Cp ≤ U)/M , and L̂ength =

∑M
j=1(Uj − Lj)/M , where

#(L ≤ Cp ≤ U) denotes the number of simulation runs for which the true pro-
cess capability index Cp lies within the confidence interval. The right-skewed
data were generated with the population mean µ = 50 and the population
standard deviation σ = 1 (Kotz and Lovelace (1998)) given in the Table 1.

Table 1: Probability distributions generated and the coefficient of skewness for Monte Carlo sim-
ulation.

Probability Distributions Coefficient of Skewness
N(50,1) 0.000

Gamma(4,2)+48 1.000
Gamma(0.75,0.867)+49.1340 2.309

Gamma(0.25,0.5)+49.5 4.000

The true values of the process capability index Cp, LSL and USL are set
in the Table 2.
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Table 2: True values of Cp, LSL and USL.

True Values of Cp LSL USL
1.00 47.00 53.00
1.33 46.01 53.99
1.50 45.50 54.50
1.67 44.99 55.01
2.00 44.00 56.00

The sample sizes were set at n = 30, 50, 75 and 100 and the number of
simulation trials was 50,000. The nominal level was fixed at 0.95. All simu-
lations were carried out using programs written in the open source statistical
package R (Ihaka and Gentleman, 1996). The simulation results are shown
in case of N(50,1) and Gamma(4,2)+48. Figures 1 and 2 provide simulation
results for the estimated coverage probability of the confidence intervals in
case of N(50,1) and while the expected length is presented in Figures 3 and 4.
Clearly, the augmented-large-sample (ALS) confidence interval has estimated
coverage probabilities close to the nominal level when the data were gener-
ated from a normal distribution for all the sample sizes. On the other hand,
for more skewed distributions, all the confidence intervals provided estimated
coverage probabilities that were much different from the nominal level, espe-
cially the large-sample (LS) confidence interval and the adjusted degrees of
freedom (ADJ) confidence interval. The ALS confidence interval performed
well when compared with other confidence intervals in terms of coverage prob-
ability. Additionally, when the underlying distributions were much skewed, i.e.,
Gamma(0.25,0.5)+49.5, the LS and ADJ confidence intervals had coverage be-
low 90% for all sample sizes. The expected lengths of LS and ADJ confidence
intervals were shortest for all situations. This is not surprising because the cov-
erage probabilities of LS and ADJ confidence intervals were below the nominal
level. Hence, using the LS and ADJ confidence intervals is not recommended.
When sample sizes increase, the expected lengths become shorter. On the
other hand, when the underlying distributions are much skewed, the expected
lengths become wider. Other simulations not shown in this paper yield the
results similar to the simulations of N(50,1) and Gamma(4,2)+48.
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Figure 1: Estimated coverage probabilities of 95% confidence intervals for Cp in case of N(50,1).
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Figure 2: Estimated coverage probabilities of 95% confidence intervals for Cp in case of
Gamma(4,2)+48.
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Figure 3: Expected lengths of 95% confidence intervals for Cp in case of N(50,1).
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Figure 4: Expected lengths of 95% confidence intervals for Cp in case of Gamma(4,2)+48.
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5. Conclusions

This paper studied three confidence intervals for the process capability in-
dex Cp. The proposed confidence intervals were based on the confidence inter-
vals for the variance under non-normality, which was constructed by Hummel
and Hettmansperger (2004) and Burch (2014). They consisted of the adjusted
degrees of freedom (ADJ) confidence interval, large-sample (LS) confidence in-
terval, and augmented-large-sample (ALS) confidence interval. All proposed
confidence intervals were compared through a Monte Carlo simulation study.
The ALS confidence interval proved to be better than the other confidence in-
tervals in terms of coverage probability for all situations. Therefore, the use of
the ALS confidence interval is recommended.
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